Process Sheet

Fixed Plate unit with heating

This page shows a psychometric process for a typical 100% outdoor air energy recovery unit under standard design conditions. The numbers indicate different stages in the process where there is a transformation of the incoming air condition. The energy saving is compared to the energy needed to achieve the same supply conditions with a basic heating and/or cooling makeup air unit.

Process Calculation (per 1000 cfm)

Summer Operation

Plate effectiveness 65\%
The fixed plate heat exchanger pre-conditions the air reaching the rooftop unit cooling coil by cooling it. The air entering the cooling coil is at a closer temperature to the desired room air, thereby requiring less mechanical cooling. As a result the cooling coil can be downsized compared to a norecovery process.
(1)-2) pre-cool section

$$
Q t=4.5 \times 1000 \times(41.7-37.4)=18 \mathrm{mbh}(1.5 \text { tons })
$$

Winter Operation

Plate effectiveness 62 \%
The fixed plate pre-conditions the air entering the heating coil by heating it. The air entering the heating coil is at a closer temperature to the desired room air,thereby reducing the amount of mechanical heating needed. As a result the heating coil can be downsized compared to a no-recovery process.
(1)-2 pre-heat section

$$
Q_{s}=1.08 \times 1000 \times(45-10)=37.8 \mathrm{mbh}
$$

2-4) mechanical heating
$Q_{s}=1.08 \times 1000 \times(95-45)=54.0 \mathrm{mbh}$

Savings gained by energy recovery
cooling: $\quad 1.5$ tons $/ 1000 \mathrm{cfm}$ heating: $37.8 \mathrm{mbh} / 1000 \mathrm{cfm}$

